
Fourier's number Fo for different values of Blot's number Bi. In the calculations we took 
Gin = 20~ and t o = 300~ The results are presented in the form of plots in Figs. 1 and 
2. The solid curves correspond to the solution of the nonlinear boundary-value problem 
of heat conduction with Kirchhoff's variable, calculated from the formula (9), while the 
dot-dashed~curves were calculated with Kirchhoff's variable taken in the form (I0), i.e., 
they represent the approximate solution. The dashed lines correspond to the solution of 
the linear boundary-value problem, i.e., under the assumption that the thermophysical char- 
acteristics do not depend on the temperature. 

The numerical calculations showed that when the temperature dependence of the thermo- 
physical characteristics is taken into account the temperature is lower than the corres- 
ponding temperatures in a uniform heat-insensitive body. It should also be noted that 
linearizing the boundary condition of the third kind, performed by simply replacing t with 
~, results in a significant distortion of the behavior of the temperature in the heat-sesi- 
tive sphere even in the case when the characteristics are linear functions of the tempera- 
ture with a comparatively small value of the coefficient k 0. 

NOTATION 

t, temperature field; ~, Kirchhoff's variable; %, thermal conductivity; Cv, heat 
capacity at constant volume; a, heat-transfer coefficient of the surface r = R; S• 
asymmetric unit step functions; ~, time; and r, radial coordinate. 
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VARIATIONAL FORMULATION OF A NONSTATIONARY HEAT-CONDUCTION PROBLEM 

V. A. Bondarev UDC 536.2:517.9 

A functional for a heat conduction problem is determined from thermodynamic con- 
siderations; also a class of functions is determined in which it is possible to 
realize an extremum of the functional. 

According to the second law of thermodynamics, in a nonstationary thermodynamical phy- 
sical system only such spontaneous processes are possible which bring a system of bodies 
participating in heat exchange closer to equilibrium. In addition, the rate of approach 
to equilibrium is determined by an increase of entropy s, which reaches a maximum value 
in the state of equilibrium. In the case of a variational formulation of a nonstationary 
heat conduction problem, arbitrarily small variations in the solution ~ can be regarded as 
the result of the action of some fictitious sources of heat in the system. If the solution 

is varied in such a way that the fictitious forces lead to a change of entropy in a direc- 
tion away from equilibrium with respect to real processes, then, for the same initial and 
boundary conditions, the time for the system to approach equilibrium will increase. Then 
the largest rate of approach to equilibrium will correspond to the solution ~. 

In view of the above, it is appropriate to assume that for the nonstationary heat con- 
duction problem a functional can be constructed having an extremum at the solution ~, real- 
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izable in some class of approximating functions. As the analysis below indicates, a func- 
tional for the problem in question can be obtained through use of the concept of entropy 
flow s~, defining change of entropy s per unit time, from the condition s~ = -q/T. How- 
ever, as further studies show, the computational method can be simplified if, instead of 
entropy, we introduce a closely related thermodynamic function ~, depending on the heat 
flux q and temperature 8 in such a way that the change in �9 over the time interval T: - ~• 
amounts to 

A~F = - -  S qOd'~. ( 1 ) 
T 1  

In a thermodynamic sense the quantity ~ can be regarded as a calculating function, 
one which makes it possible to determine thermal flow q from the relation ~' = -xlS. 

' the derivative ~T' tends towards zero as equilibrium is Like the entropy flow sT, 
! ! 

approached. Therefore, the quantities s~ and ~T characterize the approach to equilibrium 
in an analogous way. The difference between s~ and PT' consists of the fact that in deter- 
mining ~T' the temperature 0 is a factor, whereas in the relationship s~ = -q/T the ab- 
solute temperature is found in the denominator. 

Upon taking relation (i) into account and also the Fourier heat conduction law q = 
-X(O)8 x, we determine the change in ~ for a one-dimensional thermal flow and a three-dimen- 
sional interval (xi, x 2) at an element of unit area: 

~ a (Z (9)~'~)~ dxd~. (2) 
-~ x~ L J 

It follows from relation (2) that ~ is a thermodynamic function which depends only 
on the temperature ~. Therefore, upon determining 3/Sx(X(8)Sx) from the heat conduction 
equation with source qv(O) : 

a_~ (~o (o) o ; ) - - c (# )  p#'~ - -  q. (~)) = o, ( 3 ) 
8x 

we obtain, taking into account the variation of P on the boundaries, 

"C2 , X 2  X 

i (8) = S {~ [~ (8) ~;" + ~ (8) ,oe;~ + q~ (8) ~] e~ + (qe)l;:I a~ = o. 
'17 t X 1 

(4) 

We assume that for the boundary surface S i the thermal flow q~ is given as a function 
of the temperature 8si , while on the surface S 2 = S - S l the temperature distribution 8s2 
is known: 

q~ = q (%0, % = e ~ .  ( 5 )  

Generalizing 1(8) for a three-dimensional region ~ bounded by surface S, we determine 
from relations (4) and (5) a functional whose extremal properties we shall investigate: 

Ti S~ 

.... S X(e~)r d~ = O; ~; = de/dx~ (~ = 1, 2, 3). (6) 
$2 

From relations (5) and (6) we obtain with the aid of the Gauss-Ostrogradskii formula 

"f I (~) = ~ ~ L (~) OdQdT --= O, ( 7 ) 

where 

0 q~, (~ )=  o. (8)  
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Presence of the operator L(%) in relation (7) from the differential equation of heat 
conduction is the result of a generalization of Eq. (3) into Eq. (4) on the region ~. 

Functional (6) represents a variational formulation of the nonstationary heat con- 
duction problem. Here the boundary conditions are taken into account by the last two terms 
in Eq. (6). 

If, instead of a variation of the function ~' = -q% in relation (i), we consider a 
' = -q/T, the integrand expression in relation change in the entropy of the thermal flow, s~ 

(7) then assumes the form L(@)/T 2. For sucha functional, the coefficients used in defining 
the approximating functions will depend on the values of the absolute temperature T m of the 
medium and the initial temperature T o , thereby substantially complicating the search for 
these coefficients. In what follows we shall use functional (6) and determine relative 
values of the temperature % = T - To, during heating, or % = T - Tm, during cooling, there- 
by enabling us to eliminate the influence of the origin of reference of the temperature 
on the value of the coefficients. 

We shall vary the solution % of the problem in some class of functions O to which there 
correspond arbitrarily small variations of f: 

@=O+f, 0, f6C 2. (9) 

In accordance with relations (7) and (8), upon substituting solutions % of the problem 
into functional (6), we find that the functional vanishes: 

I(0)  =0. (10) 

The re fo re ,  we v e r i f y  the  presence  of an extremum of f u n c t i o n a l  (6) by de te rmin ing  the  s ign  
of its increment &I, which, according to Eq. (i0), is equal to the value of functional 
(6) under the variations (9): AI(@) ~ I(@). 

The approximating functions @ cannot satisfy equation (8), to which there corresponds 
the residual e(xi, T): 

L(@)--8(xi, ~)=0. (11) 

I f  f u n c t i o n s  @ do not  s a t i s f y  boundary c o n d i t i o n s  (5) ,  we then  have the  r e s i d u a l s  

& =  q(0~)--- Z(G0(G~)2 G = G ,  - G~. (12) 

The quantity s in Eq. (ii) can be regarded as a fictitious heat source in region 
~. The residual E l also represents a fictitious heat source on surface Sz, and the quantity 
E~ is equal to the change in temperature of surface S 2 as the result of the action of a 
fictitious heat source on this surface. 

We select approximating functions (9) satisfying the inequality 

I(0)<0. (13) 

Then, accord ing  to r e l a t i o n s  (9) and (10) ,  to  c o n d i t i o n  (13) t h e r e  w i l l  correspond 
a maximum of f u n c t i o n a l  (6) .  In order  to v e r i f y  t h a t  a maximum in r e l a t i o n  (13) ,  r e a l i z a b l e  
in the class of functions @, exists on a solution %, it is sufficient to convince ourselves 
that it is unique and that values of the functional in neighborhoods of the extremal point 
will be arbitrarily small. We assume here that uniqueness of a solution % is determined 
by physical conditions. According to relations (6) and (10)-(13), for approximations @ the 
change of function P in region ~ will be less than on the boundaries. Maximum values of 
the change in ~, and of its derivative with respect to the time, ~T' = -q%, in ~ in relation 
to their values on the boundaries occur for a solution %, which determines the existence 
of an extrem~n in relations (i0), (13). 

Analysis shows that it is not possible to give a physical meaning to functional (6) 
using elementary concepts. In some problems an extremum of the functional can exist to which 
a physical interpretation can be given according to the meaning of the problem, for example, 
in the determination of a minimal surface or maximum entropy. We shall consider variations 
for which the extremum (i0), (13) is unique and values of the time corresponding to the 
solution % are less than for the approximations O. Then the rate of change of the tempera- 
ture %, being defined in accordance with relation (6) for given heat exchange conditions 
on the boundaries (5), will have the largest value. If such an extremum can be realized in 
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some class of functions, it then becomes possible to assume that under the conditions con- 
sidered some maximally possible rate of approximation to equilibrium can be the result of 
physical peculiarities of real processes. In particular, this agrees with the second law 
of thermodynamics, meaning that the existence of only such spontaneous processes is possible 
which bring a system to equilibrium. 

If we take into account the statistical nature of heat transfer in macrosystems, it 
might be possible to confirm the assumption made if we can show that the distribution of 
temperature ~ corresponding to the solution of the problem is statistically most probable 
with respect to arbitrary approximations 0. However, with the aforesaid taken into account, 
there are reasons for assuming, as in the case of the second law of thermodynamics, that 
the existence of an extremum, to which there corresponds physically a minimum time, cannot 
be established from arbitrary theoretical considerations or formal proofs and must be based 
on the results of observations with physical objects. For the problem in question, this 
can be done, through computational verification, whether there exist classes of functions 
in which conditions (9) and (13) are uniquely satisfied for all values of x i and ~. In 
proceeding, we shall obtain approximations to the solution 8 from above and below, enabling 
us to verify the existence of an extremum of functional (6) and its uniqueness in each con- 
crete problem. 

We select functions 0 such that at point @~ of a maximum in relation (13) the absolute 
value of functional (6) is the smallest possible and sufficiently small: 

if (O~)] < ~l. (14) 

We assume that this maximum is unique in the class of functions 0, an assumption to 
be corroborated in subsequent calculations. Taking into account uniqueness of a solution 
~, we can assume existence of a class of functions in which the extremum in relations (i0), 
(13) on solutions 8 is also attained in a unique way. Then, taking relations (i0) and (13), 
into account, we assume that the function Or, satisfying condition (14), will be a better 
approximation to solution ~. In addition, values of the moduli II(@u) I must be sufficiently 
small for all values of T*, ~ < ~* ~ T z. 

In accordance with the aforesaid, one must assume that values of the approximating 
functions Oi, satisfying inequalities (13) and (14), as well as the condition lOi - @~! < ~2, 
can be considered to be the result of arbitrarily small variations of f on the solution 
O. With the aim of verifying this supposition, we shall determine the signs of the varia- 
tions of f corresponding to the approximating functions 0i; this also enables us to obtain 
approximations @a and @b, from below and above, respectively, to solution ~. 

We obtain a fictitious thermal flow on surface S = S i + $2, due to the action of heat 
sources s, El, and E2: 

Tm 

TI - S l  $2  

A c c o r d i n g  t o  t h e  law o f  c o n s e r v a t i o n  o f  e n e r g y ,  v a r i a t i o n s  o f  t h e  s u r f a c e  t e m p e r a -  
t u r e  a r e  d e t e r m i n e d  by v a l u e s  o f  t h e r m a l  f l o w s  Aqs a t  c o r r e s p o n d i n g  p o i n t s  o f  t h e  b o u n d a r y  
s u r f a c e .  I f ,  i n  a d d i t i o n ,  s i g n s  o f  t h e  t h e r m a l  f l o w s  Aqs in  Eq. (15)  do n o t  v a r y  o v e r  
the time interval ~2 - Ti, then the signs of variations fa = 0a - ~ and fb = Ob - 8, relation 
(9) will depend only on signs of the thermal flows Aqs(@ a) and Aqs(Ob). For an approxima- 
tion @a from below to solution ~ the flow Aqs(@a) will have a negative value, while for an 
approximation 0 b from above to ~ the flow Aqs(@b) will be positive: 

Aq~ (Oa) < 0, Aq~ (@b) > O, % < =* ~ T 2. (16)  

Then,  upon s e l e c t i n g  a p p r o x i m a t i n g  f u n c t i o n s  Oi ,  w i t h  i n e q u a l i t i e s  (16)  t a k e n  i n t o  
a c c o u n t ,  we o b t a i n  t h e  r e l a t i o n s  

[~ ,~0 ,  [ ~ > 0 ,  0 ~ @ ~ ,  (17)  

which signify that the values of Oa and 0 b are approximations to the solution O from below 
and above, respectively. 

Upon substituting into Eq. (15) solutions O of problem (5) and (8), we have the 

equation Aqs(8) = 0 for all values of the time ~. Therefore, we select functions 0v, taking 
into account the condition 
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~q~ (o~) = o, (18)  

t o  which  t h e r e  w i l l  c o r r e s p o n d  a b e s t  a p p r o x i m a t i o n  Cv t o  s o l u t i o n  O. 

F u n c t i o n s  Cv c a n n o t  s a t i s f y  Eq. (18)  f o r  a l l  v a l u e s  o f  z w, ~1 < ~* ~ ~2. I n  
such  a c a s e  we o b t a i n  a p p r o x i m a t i o n s  0 v t h r o u g h  o b t a i n i n g  minimum v a l u e s  o f  t h e  m o d u l i  
IAqs(ev)l for different instants of time ~*: 

Here it is necessary to verify that for all values of ~* the inequalities (16) are 
satisfied. The directions of the fictitious thermal sources Aqs(O a) and bqs(eb) are then 
maintained for all values of T* and the inequalities (17), in accordance with the law of 
conservation of energy, will be satisfied. Values of the moduli II(@v)l must also be 
determined in a similar way. 

For an accepted error 6~ in calculating the temperature, we obtain 

1 (19)  

The difference O b- O a in relation (19) and the error corresponding to it depend on the 
choice of approximating functions O, which must satisfy conditions (16). if the functions 
@ do not guarantee a sufficiently good approximation to the solution %, then, as calcula- 
tions show, the inequalities (16) can only be satisfied for large values of the difference 

eb - @a" 

An estimate of the signs of the variations proved to be possible because the values 
of the sources e, E~, and E 2, in contrast to the variations f, are not arbitrary and can 
be determined depending on the choice of functions @a and @b, which constitute solutions of 
problem (ii) and (12) having a physical meaning. This makes it possible to find the fic- 
titious flows caused by the sources s, E I and E 2, and also to establish the signs of these 
flows, which determine the signs of the variations fa and fb" If the system of approxi- 
mating functions @ is not complete, then an estimate of the error in the calculation through 
a formal analysis of variations without use of the law of conservation of energy cannot, 
evidently, be carried out. 

As approximations @ we select functions (9) with constant coefficients. Then, after 
integration, functional (6) becomes a function of these coefficients I(~i, ~ ..... ~j, ~m)" 
If the integration is carried out only over the region ~, then for fixed m values of ~2 
we obtain the analogous function I($i , 92 .... Bj, ~m)" 

The unknown coefficients $ can be determined from the conditions for a minimum sum 
of moduli 

h / 
Z ]I (wi) ] = Imi~; E [Aq (~i)1 = Aqsmin. 
i=2 ~+1 

(20)  

These relations also make it possible to obtain values of ~ for the case in which some 
of the equations do not have roots close to the extremal point. 

According to relations (6) and (10)-(12) existence of a minimum for functional (6) 
is determined by the inequality 

I ( 0 )  >0 .  (21)  

We select approximating functions O in such a way that inequalities (14), (17), and 
(18) preserve their sense. Following the reasoning presented above, we find that approxi- 
mations @v can be determined in a similar manner for inequality (21). 

To calculate the temperature at some point r inside region ~, we break up this region 
into two subregions ~l and ~2 in such a way that point r is located on the common boundary 
S r between ~i and ~2- We assume that on boundary S r there exists a fictitious heat source 
Er = qr2 - qr!. If the quantities E and E r are of opposite sign, then, as a result of the 
action of the boundary source E r, the influence of the internal heat source E in ~ on the 
temperature of the partitioning surface S r will diminish. 
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Surface S r differs from S by the presence of a single fictitious source, whereas there 
are two sources acting on S. Therefore, all the discussion for approximations @v in region 

holds true for subregion ~l- If coefficients ~j are varied over the region, the approxi- 
mation will then be realized in the form of a polygonal line, as in the case of approxima- 

tion by splines. 

Functional (9) contains no initial conditions, which means that in a variational formula- 
tion of a nonstationary heat conduction problem the initial conditions play no role. As 
initial temperature here, we can consider the distribution of temperature 81 in region ~ at 

an arbitrary instant of time ~0 ~ ~• In the sequel we shall take into account the initial 
conditions, selecting functions O in a class satisfying these conditions. 

As an example, we consider the problem of radiative heating of an unbounded plate of 
unit thickness with thermally insulated surface Oi(0, T) = 0 at a constant absolute tem- 
perature T m = const of the surrounding medium and a uniformly distributed initial plate 
temperature: T(x, 0) = const. 

We use a trigonometric polynomial to approximate the absolute temperature T(x, ~) of 
the plate: 

O(x, F o ) =  1-- '7 [ ~  Di(Vo) coslxix--N(Fo)cos kxt;  (22) 
i=1  

O(x, F o ) = T ( x ,  Fc)/T,,~; ~?= 1 -@(x, 0); Fo =a'~; (23) 

Di (Fo)= D~ exp [ -- %F,.) -{- b exp (--- 40Fo)]; N (Fo) = B exp (-- %Fo). (24) 

We obtain the amount of heat flow at the boundary x = 1 from the Stefan-Boltzman law: 

q(1, F.:.)=_CT;*,,[1 .... @~(1, Fo)l. (25) 

Using relations (6), (22), (25), and the boundary condition 0~(0, Fo) = 0, we deter- 
mine the functional 

",r;;~ (e)-- o; ~ (x, Fo)+ (x, Vo)Q;(x, Fo) a x  ..... 
- 0 a 

--Bi..O(1, Fo) [1--  @s (1, Fo)]; Bi>=CTa/)~. (26) 

We select the terms Di(0)cos~ix in the class of orthogonal functions and obtain D i 
from the initial condition O(x, 0) = 1 - y: 

Di . (2sin~4-k BP~p~)expb ," p s i n ( p , + k ) + s i n ( p i - - / e )  (27) 
i~ + sin ~ cos ~ ~*~ -k- k 1~ .... k 

For choice of initial approximation we specify the Blot number from boundary condition 
(25): 

Bi--  ( z  q[~(1, Fo)] --Bi~ [ I + O ( 1 ,  Fo)][I~@~(1,Fo)]. 
~Tm[1--@(1, Fo)] 

When ~ = ~, 0(I, ~) = 1 and Bi = 4Bip; therefore, we obtain the initial values ~z0 
and ~i0 = ~0 from the characteristic equation for the linear problem when Bi = const: ~ttan~i = 
4Bip [i]. 

We select coefficients ~i for i > 2, ~i = ~2(2i + i)2/(2i - 1) 2 . Then for i > 2 the 
~i will increase rapidly, and when i = 2 the function O will approximate the solution % 
for Fo > Fo I . 

For determination of the coefficients we obtain from relations (8) and (18), after 
intergration and some simplifications, 
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TABLE i. Values of Relative Temperature of Surface of Un- 
bounded Plate Subjected to Radiative Heating 

Bip=0,5; Y=0,85 

~ , =  1,1757; % =  1,0128; u~=3,3516; q~2=3,7310; 
k=1,9346; b=0,0030; B=1,0754; % =  1,8929 

Fo 0,3 [ 0,5 0,7 1,0 1,5 2,0 

Os 0,4571 0,5410 0,6228 0,7257 0,8414 0,9079 

Osl 0 , 4 5 3 2 1 0 , 5 4 4 6  0,6238 0,7231 1 0,8396 0,9090 

Bip=2,0; 7=0,8  

pt~ = 1,3975; % = 1,9540; bt,a = 4,2303; ~p., = 17,86; 
k=2,0431; b=0,0335; B=0,1295; %=4,1698 

Fo 0,3 0,4 0,5 0,6 0,8 1,0 

0,8784 0,9026 0,9214 I 0,9363 0,9578 0,9719 @s 
I 

0,9026 0,9215 [ 0,9364 0,9579 0,9719 
4 

@sl o,8774 

~, % 0,1 0,1 

Upon taking into account the quantity of heat TmcPu , accumulated per unit volume of 
the plate at T = =, and the condition (25), we obtain the following for the last integral 
in Eq. (28) when Fo > Fo I and i = 2: 

~ q ( t ,  F o ) d ~ = 7 - - B i  p [1---O~(1, Fo)ldFo; c97T,, =: q(l. F~)d~. 
Tmcp 

Fo~ 0 

We o b t a i n  t h e  unknown c o e f f i c i e n t s  in  r e l a t i o n s  ( 2 2 ) - ( 2 4 )  b e f o r e h a n d  f rom t h e  s y s t e m  
of  e q n a t i Q n s  I ( ~ j )  = 0 and k q s ( Z j )  = 0 when Fo v a r i e s  f rom 0 .4  t o  1 .0 ;  t h i s  t a k e s  3 t o  4 
iterations. We then revise all the coefficients from conditions (18) and (20) using Rozen- 
brok's multidimensional optimization method [2]. In the course of our calculations we vary 
~i; from Aqs(~ j) = 0 we verify the value of ~i to which Imi n must correspond. 

Table 1 gives values for the temperature 0 s of the surface of the plate for Bip = 0.5 
and Bip = 2.0, obtained from relations (20), (26), and (28); it also gives values for the 
error ~. A comparison of the results of the variational calculations with values of the 
temperature @sl, obtained by the method of finite differences [3], shows that when Fo > 
0.3 both methods have the same order of error. Sums of moduli, obtained from relations 
(20) for three values of Fo (0.5, 0.75, and 1.0) and Bip = 2.0, were found to be Imi n = 
0.0011 and Aqsmi n = 0.0002; these values confirm that when Bip = 2.0 expression (22) gives 
a good approximation to the solution of the problem. 

The variational method we have presented makes it possible not only to represent results 
of our calculations in analytic form, but it also allows us to carry out integration with 
respect to certain variables in the process of treating the method numerically. The latter 
can prove to be important for multidimensional nonlinear problems, particularly, for the 
solution of the heat conduction equation, along with other differential equations describ- 
ing some process. Determination of the coefficients in relations (22)-(24) by the varia- 
tional method required an operative memory on the order of 2.5 Kbytes on the microcomputer 
HP-41CV. Here, instead of solving a system of nonlinear equations, we carried out an opti- 
mization of conditions (20); this substantially broadens possibilities of the method. 

In using direct methods for functional (6) errors may appear which are common for 
variational problems and are connected with possible violations of certain correctness con- 
ditions owing to the arbitrariness of the variations (9). However, in the case of functional 
(6), an estimate of the errors arising from there can be ascertained from thermodynamic con- 
ditions. 
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As the following calculations show, some coefficients, useful in determining the 
approximating functions O, in particular, coefficients depending on the time, can, close 
to an extremum point, take on minimum or maximum values, a situation which makes their 
retrieval easier. If in relation (6) we use functions 0 ~ ~, which satisfy relations (5) 
and (8), it is easy to see that coefficients obtained from relations (17) and (20) gen- 
erally coincide with values of the coefficients obtained from characteristic equations by 
classical methods. For nonlinear problems there exist residuals in relations (ii) and (12); 
however, the functions 0 can always be improved. If it is not possible to select functions 
of another kind, we can then increase the number of defining coefficients and points cor- 
responding to them at which an approximation of functions @ to the solution can be effected. 

Necessary and sufficient conditions for the existence of an extremum of functional 
(6) are determined by relations (I0), (13), (17), and (21), and, therefore, no proof of 
corresponding lemmas from variational calculus is needed. Realization of an extremum of 
functional (26) in the class of functions (22)-(24) can be considered as a confirmation 
of the existence of conditions (14)-(18) on the solution of boundary value problem (5) and 
(8). If an extremum of this physical type exists, then, as analysis of classical variational 
problems shows, the choice of approximating functions and the determination of unknown co- 
efficients are substantially simplified. The approximation O can be effected with the aid 
of various functions, but calculations show that a satisfactorily chosen class of functions 
turns out to be unique in the sense of relations (14)-(18). Existence of such functions 
for problem (5) and (8) can be regarded as a consequence of the uniqueness of its solution, 
arising, in turn, from physical conditions. According to relations (2) and (4), for a 
heat conduction process in a solid body, ~ is a function of state and, therefore, its rate 
of change PT', as well as the change of entropy of flow s~ = -q/T, uniquely determines the 
heat transfer process. With the aforesaid taken into account, there is a basis for assum- 
ing that the extremum (13) or (21), to which the specified quantity ~' corresponds, is 
also unique. 

Functional (6) makes it possible to carry out calculations, using as initial tempera- 
ture its value O(xi, ~) at �9 = ~ Such a condition assumes passage of heat from a lower 
to a higher temperature and therefore contradicts the second law of thermodynamics. Since 
the relations obtained above, in this connection, do not change, a reading of the temperature 
from @(xi, ~) can be used as a computational device. If in sequence (22) the values of 
the functions decrease rapidly, then, in integrating between the limits from ~ to Fol, we 
cannot take into account terms which become sufficiently small for large Fol, whereas these 
terms do influence the result of integrating between the limits of 0 and Fo I. A similar 
calculation was carried out in computing the last integral in Eq. (28). 

A comparison of integrals used in the solution of boundary value problems by the 
Galerkin method with integral (7) shows that their integrands are similar. Let us sub- 
stitute the approximation solution 0 v into relation (7) and assume that I(@v) = 0. In this 
case equation I(Ov) = 0 determines orthogonality of residual e in relation (ii) and the 
function 0 v. In the Galerkin method integrals of the form (7) are obtained from conditions 
of orthogonality of residual e and each of the functions in the selected sequence @v = 01 + 
@2 + --. + @j. Summation of the integrals obtained in this way leads to the equation I(Ov) = 
0. Then, in ~ccordance with the above,the Galerkin method can be regarded as a variational 
method if the approximating functions are selected with the same conditions taken into 
account as in realizing an extremum of functional (6). In solving problem (5) and (8) by 
the Galerkin method it is very rare that one can satisfy condition (7) for the approximate 
solution 0 v and each function Oj, a fact which significantly limits the choice of the approxi- 
mating functions and does not permit broad use of this method. Condition (14) for func- 
tional (6) makes it possible to broaden essentially the class of approximating functions. 
In addition, functional (6) takes into account the influence of residuals E I and E 2 being 
considered as fictitious heat sources on the boundaries. 

NOTATION 

~, temperature; ~, new thermodynamic function; T, time; q, thermal flow; x, xi, co- 
ordinates; A, coefficient of thermal conductivity; qv, volume heat source; p, density; 

! 
c, thermal capacity; S, boundary surface; ~, three-dimensional region; ~n, temperature gra- 
dient directed along normal to boundary surface; T, absolute temperature; Tm, temperature 
of medium; I, functional; @, approximating function; f, arbitrarily small variations of 
solution of problem; g, El, E2, fictitious sources of heat; ~, thermal diffusivity coef- 
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ficient; C, radiation coefficient; Fo = aT, Fourier number (dimensionless time) for plate 
of unit thickness; (i - ~), relative initial temperature; ~j, Di, ~i, Di, B, k, b, co- 
efficients defined in text; ~, heat transfer coefficient; BI, Blot number; Bip, radiative 
Biotinumber for plate of unit thickness. 

i, 
2. 
3. 

LITERATURE CITED 

A. V. Lykov, Theory of Heat Conduction [in Russian], Moscow (1967). 
T. Shup, Solution of Engineering Problems on a Computer [in Russian], Moscow (1982). 
A. V. Kavaderov and Yu. A. Samoilovich, Combustion, Heat Exchange, and Processes of 
Heating of Metal in Furnaces [in Russian], Sverdlovsk (1963), pp. 14-50. 

EXISTENCE OF SOLITARY WAVES IN A PRESTRESSED NONLINEAR 

THERMOELASTIC MEDIUM WITH DRY FRICTION 

M. D. Martynenko and Fam Shi Vin UDC 539.3 

The one-dimensional problem of the solitary wave propagation in a prestressed 
nonlinear thermoelastic medium with dry friction is analyzed on the basis of a 
geometrically nonlinear model. An equation is derived for calculating the free 
energy at which solitary waves can be generated in such a medium. It is shown 
that the wave velocity depends on the initial state of the medium and on the dry 
friction law. 

i. BASIC EQUATIONS OF THE NONLINEAR THEORY OF THERMOELASTICITY 

IN THE PRESENCE OF DRY FRICTION FORCES 

Let a body obey the laws of the nonlinear theory of thermoelasticity in the presence 
of dry friction; the analysis of the wave processes in the one-dimensional problem in La- 
grangian variables is then reduced to the solution of the following equations [1-4]: a) 
the equation of motion 

_ _  ~u _L a [(1 ~ ~ o  '~] --P0 sgnvfQvl) 
Ox ' " O f  2 ' 

o r  

a 2 8% 8 
-- [(I + 8)~ ~] := po-- ~ [sgn vf (IvI)I, (1) 

Ox 2 c)t ~ Ox 

where c = 8u/Sx, v = ~u/St, f is a continuously differentiable function on the interval 
(0; ~] (~ > 0), f'(v), f(v) > 0 for v E (0; ~], and f(0) = 0; the condition f(0) = 0 ensures 
the differentiability of the function sign v f(Ivl) (v e [-~; ~]); b) the heat-conduction 
equation, assuming that 
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